VARIANZA
Esta medida nos permite identificar la diferencia promedio que hay entre cada uno de los valores respecto a su punto central (Media
Ecuación 5-6
Donde (
Ecuación 5-7
Donde (S2) representa la varianza, (Xi) representa cada uno de los valores, (
Desviación estándar o Típica
Esta medida nos permite determinar el promedio aritmético de fluctuación de los datos respecto a su punto central o media. La desviación estándar nos da como resultado un valor numérico que representa el promedio de diferencia que hay entre los datos y la media. Para calcular la desviación estándar basta con hallar la raíz cuadrada de la varianza, por lo tanto su ecuación sería:
Ecuación 5-8
Para comprender el concepto de las medidas de distribución vamos a suponer que el gerente de una empresa de alimentos desea saber que tanto varían los pesos de los empaques (en gramos), de uno de sus productos; por lo que opta por seleccionar al azar cinco unidades de ellos para pesarlos. Los productos tienen los siguientes pesos (490, 500, 510, 515 y 520) gramos respectivamente.
Por lo que su media es:
La varianza sería:
Por lo tanto la desviación estándar sería:
No hay comentarios:
Publicar un comentario